Enriching Service Semantics through Conceptual Spaces
- ONTOSE Workshop, CAISE’09, Amsterdam, 08 June 2009 -

Stefan Dietze, John Domingue
Knowledge Media Institute, The Open University, UK
Outline

- Semantic Web Services mediation
- Two-fold representation approach
- Prototypical application
- Conclusions
Semantic Web Services:

- Aim at automatic discovery, orchestration and invocation of Web services

- Formal specification of Web services in terms of their capabilities (Cap), interfaces (If) and non-functional properties (Nfp)
 \[\text{Cap} \cup \text{If} \cup \text{Nfp} \subset \text{SWS} \]

- Capabilities describe assumptions (Ass) and effects (Eff)
 \[\text{As} \cup \text{Ef} = \text{Cap} \]

- Defined through ontologies O, i.e. as tuple of concepts C, instances I, properties P, relations R and axioms A:
 \[O = \{C, I, P, R, A\} \subset SWS \]

- Reference models such as OWL-S, WSMO or SAWSDL
Introduction
SWS Mediation
- SWS discovery: matchmaking of capabilities of SWS e.g.:
 \[As_2 \subseteq As_1 \cup Ef_2 \subseteq Ef_1 \]
- SWS brokers match logical expressions
 (e.g. \[As_1 \equiv \neg I_1 \cap I_2 \& As_2 \equiv I_3 \cap \neg I_4 \])
Introduction
Semantic Mediation for SWS Discovery

- SWS discovery: matchmaking of capabilities of SWS e.g.:
 \[A_s \subseteq A_{s_1} \cap E_f \subseteq E_{f_1} \]
- SWS brokers match logical expressions
 (e.g. \(A_{s_1} \equiv \neg I_1 \cap I_2 \) & \(A_{s_2} \equiv I_3 \cap \neg I_4 \))
- Heterogeneous SWS annotations
- Semantic mediation:
 alignment/mapping of SWS concepts/instances across distinct SWS

Semantic-Level Mediation
Mediation between different semantic representations
Semantic Mediation
Issues

SWS Request (Consumer)

SWS₁
(get-flowers)

has-assumption

\[A_{S₁} \equiv I₁ \cap I₂ \]

<Color rdf:ID="Lilac"/>

<Location rdf:ID="Milton_Keynes"/>
Semantic Mediation
Issues

SWS Request (Consumer)

\(SWS_1 \)
(get-flowers)

\[A_s_1 \equiv I_1 \cap \neg I_2 \]

has-assumption

<Color rdf:ID="Lilac"/>

<Location rdf:ID="Milton_Keynes"/>

SWS (Provider)

\(SWS_2 \)
(provide-flowers)

\[A_s_2 \equiv I_3 \cap \neg I_4 \]

has-assumption

<Colour rdf:ID="Purple"/>

<geospatialLocation rdf:ID="M-K"/>
Semantic Mediation Issues

SWS Request (Consumer)

SWS₁ (get-flowers)

\[A_{S_1} \equiv \neg I_1 \cap I_2 \]

\(<\text{Color \: rdf:ID="Lilac"}/>\)

\(<\text{Location \: rdf:ID="Milton_Keynes"}/>\)

SWS (Provider)

SWS₂ (provide-flowers)

\[A_{S_2} \equiv I_3 \cap \neg I_4 \]

\(<\text{Colour \: rdf:ID="Purple"}/>\)

\(<\text{geospatialLocation \: rdf:ID="M-K"}/>\)
Issues:

- Heterogeneous SWS annotations
- Lack of implicit similarity information
 (symbol grounding problem)
- Reliance on either:
 - (i) manual mapping rules
 - (ii) ontology mapping mechanisms
 (exploiting linguistic or structural similarities)
- Costly and error-prone

==> representations needed which are expressive enough to implicitly represent similarities across heterogeneous SWS
Refining SWS ontologies through multiple Conceptual Spaces (CS), i.e. multidimensional, geometrical vector spaces

- Concept C in one SWS ontology O => Conceptual Space CS
- Instance I of C => member M (vector) in CS
- Similarity-computation between SWS instances by means of spatial distances in CS
- Common agreement at schema (i.e. CS) level
- Facilitated through wide-spread use of upper-level ontologies (DOLCE, SUMO…)

Two-fold Approach
Refining SWS through Conceptual Spaces

Agent 1
SWS Ontology O₁

Concept \(c_{1x} \)

instance-of

Instance \(i_{1i} \)

refined-as-member

Agent 2
SWS Ontology O₂

Concept \(c_{2x} \)

instance-of

Instance \(i_{2i} \)

refined-as-member

Conceptual Space \(CS_x \)
CS ontology enabling to represent SWS concepts / instances through CS:

- CS (refining concept C) represented through set of dimensions d_i each associated with a prominence value p_i: \[CS^n = \left\{ p_1 d_1, p_2 d_2, \ldots, p_n d_n \right\} d_i \in CS, p_i \in P \],

- Assignment of measurement scales

- Dimension d_j might be refined by further dimensions:
 \[d_j = D^n = \left\{ p_1' d_1', p_2' d_2', \ldots, p_n' d_n' \right\} d_k' \in D \] (CS possibly composed of subspaces),

Two-fold Approach
Formal CS Ontology
CS ontology enabling to represent SWS concepts / instances through CS:

- CS (refining concept C) represented through set of dimensions d_i each associated with a prominence value p_i:
 \[CS^n = \{ (p_1d_1, p_2d_2, ..., p_n d_n) | d_i \in CS, p_i \in P \} , \]

- Assignment of measurement scales

- Dimension d_j might be refined by further dimensions:
 \[d_j = D^n = \{ (p'_1 d'_1, p'_2 d'_2, ..., p'_n d'_n) | d'_k \in D \} \] (CS possibly composed of subspaces),

- Members M (refining instances I) represented through vectors in CS:
 \[M^n = \{ (v_1, v_2, ..., v_n) | v_i \in M \} \]

- Similarity between two SWS instances (members) V and U calculated by means of their Euclidean distance:
 \[
 dist(u, v) = \sqrt{\sum_{i=1}^{n} p_i \left(\frac{u_i - \bar{u}}{s_u} - \frac{v_i - \bar{v}}{s_v} \right)^2}
 \]

 (where \bar{u} is the mean of a dataset U and s_u is the standard deviation from U)
A Similarity-based Mediator Implementation based on WSMO

- Similarity-based SWS discovery based on Web Service Modelling Ontology (WSMO) and SWS reasoning environment IRS-III
- Similarity-based SWS discovery based on Web Service Modelling Ontology (WSMO) and SWS reasoning environment IRS-III

- WSMO Mediator: computation of similarities between given request (WSMO Goal, G_1) and set of x associated SWS ($SWS_1..SWS_x$)

- Implemented through mediation Web service
- MedWS $SWS_{1,1}$ computes x similarity values with $Sim(G_1, SWS_j)$ defined as reciprocal to the mean value of their individual member distances:

$$Sim(G_i, SWS_j) = \left(Dist(G_i, SWS_j) \right)^{-1} = \left(\frac{\sum_{k=1}^{n} (dist_k)}{n} \right)^{-1}$$

- With $dist_k$ being the distance between one particular member v_i of G_i and one member of SWS_j in the same CS.
SWS Mediation based on CS
Prototypical Application

- Uses representational approach based on CS and similarity-based WSMO Mediator
- Aims at retrieval of distributed video resources
- Keyword-based searches across 5 (REST) Web services built on top of the following (logical/physical) repositories
 - YouTube (entertainment feed) [http://www.youtube.com]
 - BBC Backstage (world news feed) [http://backstage.bbc.co.uk/]
 - Open Video [http://www.open-video.org/]
 - OU channel on YouTube [http://www.youtube.com/ou]
 - YouTube (mobile feed) [http://www.youtube.com/ou]
- Similarity-based service discovery for a given request
SWS Mediation based on CS
Prototypical Application

SWS\(_6\): get-video-request
\[M_{6_1} = \{v_1, v_2, v_3\} \quad M_{6_2} = \{v_1, v_2\} \]

CS\(_1\) Purpose Space

CS\(_2\) Environment Space

SWS\(_1\): OU-youtube

SWS\(_2\): entertain-youtube

SWS\(_3\): open-video

SWS\(_4\): bbc-backstage

SWS\(_5\): mobile-youtube

WS\(_1\): OU-youtube

WS\(_2\): entertain-youtube

WS\(_3\): open-video

WS\(_4\): bbc-backstage

WS\(_5\): mobile-youtube
SWS Mediation based on CS
Prototypical Application

SWS_6:
get-video-request
M_{6_1} = \{v_1, v_2, v_3\}
M_{6_2} = \{v_1, v_2\}

CS_1 Purpose Space

CS_2 Environment Space

O_1::Purp O_1::Env
SWS_1:
OU-youtube

O_2::Purp O_2::Env
SWS_2:
entertain-youtube

O_3::Purp O_3::Env
SWS_3:
open-video

O_4::Purp O_4::Env
SWS_4:
bbc-backstage

O_5::Purp O_5::Env
SWS_5:
mobile-youtube

WS_1:
OU-youtube

WS_2:
entertain-youtube

WS_3:
open-video

WS_4:
bbc-backstage

WS_5:
mobile-youtube
SWS Mediation based on CS Prototypical Application

CS1 Purpose Space
- SWS1: OU-youtube
- O1:Purp
- O1:Env

CS2 Environment Space
- SWS2: entertain-youtube
- O2:Purp
- O2:Env
- SWS3: open-video
- O3:Purp
- O3:Env
- SWS4: bbc-backstage
- O4:Purp
- O4:Env
- SWS5: mobile-youtube
- O5:Purp
- O5:Env

\[(p_1^{\text{information}}, p_2^{\text{education}}, p_3^{\text{leisure}}) = CS_1 \]
\[(p_4^{\text{resolution}}, p_5^{\text{bandwidth}}) = CS_2 \]
SWS Mediation based on CS
Prototypical Application

- SWS annotated with *Assumption* Ass_{SWSi} defined through conjunction of instances
- Instances refined through vectors (members) as follows

<table>
<thead>
<tr>
<th>SWS</th>
<th>Members P_i in CS$_1$ (purpose)</th>
<th>Members E_j in CS$_2$ (environment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS$_1$</td>
<td>$P_{1(SWS1)}$ = {(0, 100, 0)}</td>
<td>$E_{1(SWS1)}$ = {(100, 100)}</td>
</tr>
<tr>
<td>SWS$_2$</td>
<td>$P_{1(SWS2)}$ = {(0, 0, 100)}</td>
<td>$E_{1(SWS2)}$ = {(100, 100)}</td>
</tr>
<tr>
<td>SWS$_3$</td>
<td>$P_{1(SWS3)}$ = {(50, 50, 0)}</td>
<td>$E_{1(SWS3)}$ = {(100, 100)}</td>
</tr>
<tr>
<td>SWS$_4$</td>
<td>$P_{1(SWS4)}$ = {(100, 0, 0)}</td>
<td>$E_{1(SWS4)}$ = {(100, 100)}</td>
</tr>
<tr>
<td>SWS$_5$</td>
<td>$P_{1(SWS5)}$ = {(100, 0, 0)}</td>
<td>$E_{1(SWS5)}$ = {(10, 10)}</td>
</tr>
</tbody>
</table>
- SWS annotated with *Assumption* Ass_{SWS_i} defined through conjunction of instances.
- Instances refined through vectors (members) as follows:

<table>
<thead>
<tr>
<th>SWS</th>
<th>Members P_i in CS$_1$ (purpose)</th>
<th>Members E_j in CS$_2$ (environment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS$_1$</td>
<td>$P_{1(SWS1)} = {(0, 100, 0)}$</td>
<td>$E_{1(SWS1)} = {(100, 100)}$</td>
</tr>
<tr>
<td>SWS$_2$</td>
<td>$P_{1(SWS2)} = {(0, 0, 100)}$</td>
<td>$E_{1(SWS2)} = {(100, 100)}$</td>
</tr>
<tr>
<td>SWS$_3$</td>
<td>$P_{1(SWS3)} = {(50, 50, 0)}$</td>
<td>$E_{1(SWS3)} = {(100, 100)}$</td>
</tr>
<tr>
<td>SWS$_4$</td>
<td>$P_{1(SWS4)} = {(100, 0, 0)}$</td>
<td>$E_{1(SWS4)} = {(100, 100)}$</td>
</tr>
<tr>
<td>SWS$_5$</td>
<td>$P_{1(SWS5)} = {(100, 0, 0)}$</td>
<td>$E_{1(SWS5)} = {(10, 10)}$</td>
</tr>
</tbody>
</table>
SWS Mediation based on CS
Prototypical Application

- Requests defined through AJAX-based UI
- Requests consists of:
 - Input parameters: set of keywords (free text)
 - Assumption: defined through vectors
 (measurements describing purpose and environment)
- Similarity-based discovery of most suitable service based on WSMO mediator
DEMO

SWS_6: get-video-request
M_{S_1} = \{v_1, v_2, v_3\}
M_{S_2} = \{v_1, v_2\}

CS_1 Purpose Space CS_2 Environment Space

O_1: Purp O_1: Env
SWS_1: OU-youtube

O_2: Purp O_2: Env
SWS_2: entertain-youtube

O_3: Purp O_3: Env
SWS_3: open-video

O_4: Purp O_4: Env
SWS_4: bbc-backstage

O_5: Purp O_5: Env
SWS_5: mobile-youtube

WS_1: OU-youtube
WS_2: entertain-youtube
WS_3: open-video
WS_4: bbc-backstage
WS_5: mobile-youtube
Some issues:

- Mediation/matchmaking algorithm entirely based on instance similarities
 => combination of similarity-based and logical-based approach required

- Additional representational effort

- => CS might just shift symbol grounding issue
 (i.e. dimensions lack grounding and are ambiguous)

- Similarity-calculation requires overlapping CS and measurable quality dimensions
Some issues:

- Mediation/matchmaking algorithm entirely based on instance similarities
 => combination of similarity-based and logical-based approach required

- Additional representational effort

- => CS might just shift symbol grounding issue
 (i.e. dimensions lack grounding and are ambiguous)

- Similarity-calculation requires overlapping CS and measurable quality dimensions

..., however:

- Allows to compute similarities between distinct SWS

- Reduces the required level of common ontological agreement
 (only required at schema level).
Thank you!

E-mail: s.dietze@open.ac.uk
Web: http://people.kmi.open.ac.uk/dietze